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=PFL Généralisé Conservatif - Régime Forcé /
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=PFL Généralisé Conservatif - Régime Force

Reformulation du régime forcé de I’oscillateur
généralisé conservatif
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Résolution des n équations par la méthode de
Laplace ou I'intégrale de convolution (conditions
initiales supposees nulles)
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cPFL Généralisé Conservatlf Régime Force

Retour aux coordonnées spallales[@: = \ B | g)

pour la solution du régime forcé (Conditions
initiales supposées nulles)
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Solution générale du régime forcé avec
conditions initiales non nulles
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=PFL Généralisé Dissipatif - Régime Forcé

Dans la base modale
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=P~L Géneéralisé Dissipatif - Régime Forcé
Systeme decouplé: équation du mode de rang D (@ous-amorti})
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=PFL Régime Forcé Permanent (Harmonique)
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=PFL Fonction de transfert _ 3
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Retour en base lque: combinaison lineaire des solutions modales
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=PrL Fonction de transfert

Admittance / Fonction de Réponse en Fréquence (FRF) ou de transfert
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=p~L Analyse Modale Expérimentale (7¢c - ©ré)

Struchure discyétisée
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=PFL Analyse Modale Experimentale
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=P~L Analyse Modale - Frequences Propres

Au Vvoisinage du mode p:
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=P~L Analyse Modale - Amortissements Modaux
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Au Vvoisinage du mode p:
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