
ME-332 – Mécanique Vibratoire

Prof. Guillermo Villanueva

Leçon 10.1
Oscillateur Généralisé

Forcé



▪ Forcé Conservatif

▪ Forcé Dissipatif

▪ Analyse Modale Expérimentale
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Chapitre 14
Généralisé nDDL Conservatif

Régime Forcé



Généralisé Conservatif –Régime Forcé
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Généralisé Conservatif –Régime Forcé
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Généralisé Conservatif –Régime Forcé
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Chapitre 14
Généralisé nDDL Dissipatif (Caughey)

Régime Forcé
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Généralisé Dissipatif –Régime Forcé

Dans la base modale:

ሷԦ𝑞 + 𝑀0 −1 𝐶0 ሶԦ𝑞 + 𝑀0 −1 𝐾0 Ԧ𝑞 = 𝑀0 −1 Ԧ𝐹0(𝑡)

ሷԦ𝑞 + 2Λ ሶԦ𝑞 + Δ Ԧ𝑞 = 𝑀0 −1 Ԧ𝐹0 𝑡

𝑀0 = 𝐵 𝑇 𝑀 𝐵 ; 𝐾0 = 𝐵 𝑇 𝐾 𝐵 ; 𝐶0 = 𝐵 𝑇 𝐶 𝐵

Ԧ𝑥 = 𝐵 Ԧ𝑞 ↔ Ԧ𝑞 = 𝐵 −1 Ԧ𝑥

Ԧ𝐹0 = 𝐵 𝑇 Ԧ𝐹



Généralisé Dissipatif –Régime Forcé
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Système découplé: équation du mode de rang 𝑝 (sous-amorti)

ሷ𝑞𝑝 + 2𝜆𝑝 ሶ𝑞𝑝 + 𝜔0𝑝
2𝑞𝑝 =

1

𝑚𝑝
0
Ԧ𝛽𝑝
𝑇 Ԧ𝐹(𝑡) =

1

𝑚𝑝
0 𝑓𝑝

0(𝑡)

𝜆𝑝 =
𝑐𝑝
0

2𝑚𝑝
0 , 𝜂𝑝 =

𝜆𝑝

𝜔0𝑝
, 𝜔𝑝 = 𝜔0𝑝 1 − 𝜂𝑝

2

𝑞𝑝 𝑡 =
1

𝑚𝑝
0𝜔𝑝

න
0

𝑡

𝑓𝑝
0 𝑡 − 𝑢 ⅇ−𝜆𝑝𝑢 sin 𝜔𝑝𝑢 ⅆ𝑢 +

+
ⅇ−𝜆𝑝𝑡

𝑚𝑝
0 𝛽𝑝

𝑇 𝑀 𝑋0 cos 𝜔𝑝𝑡 +
1

𝜔𝑝
𝛽𝑝
𝑇 𝑀 𝑉0 + 𝜆𝑝𝑋0 sin 𝜔𝑝𝑡



Régime Forcé Permanent (Harmonique)
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ሷ𝑞𝑝 + 2𝜆𝑝 ሶ𝑞𝑝 + 𝜔0𝑝
2𝑞𝑝 =

1

𝑚𝑝
0
Ԧ𝛽𝑝
𝑇 Ԧ𝐹(𝑡) =

1

𝑚𝑝
0 𝑓𝑝

0(𝑡)

Passage dans le domaine de Fourier (ou Laplace)

𝑞𝑝(𝑡) → 𝑄𝑝(𝑗𝜔), 𝑓𝑝
0 → 𝐹𝑝

𝑜(𝑗𝜔)

𝑄𝑝 𝑗𝜔 = 𝑌𝑝𝑝
0 𝑗𝜔 𝐹𝑝

0 𝑗𝜔

𝑎𝑣ⅇ𝑐:

𝑌𝑝𝑝
0 (𝑗𝜔) =

1

𝑚𝑝
0(−𝜔2 + 2𝜆𝑝𝑗𝜔 + 𝜔0𝑝

2)
=

1

𝑚𝑝
0(𝜔0𝑝

2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 − 𝜔2)



Fonction de transfert
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𝑄𝑝(𝑗𝜔) = 𝑌𝑝(𝑗𝜔)𝐹𝑝
0(𝑗𝜔)

𝑎𝑣ⅇ𝑐:

𝑌𝑝𝑝
0 (𝑗𝜔) =

1

𝑚𝑝
0(−𝜔2 + 2𝜆𝑝𝑗𝜔 + 𝜔0𝑝

2)
=

1

𝑚𝑝
0(𝜔0𝑝

2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 − 𝜔2)

Retour en base physique: combinaison linéaire des solutions modales

Ԧ𝑋(𝑗𝜔) =෍

𝑝=𝐼

𝑛

Ԧ𝛽𝑝𝑄𝑝(𝑗𝜔) =෍

𝑝=𝐼

𝑛

Ԧ𝛽𝑝
𝐹𝑝
0(𝑗𝜔)

𝑚𝑝
0(−𝜔2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 + 𝜔0𝑝

2)

=෍

𝑝=𝐼

𝑛

Ԧ𝛽𝑝
Ԧ𝛽𝑝
𝑇 Ԧ𝐹(𝑗𝜔)

𝑚𝑝
0(−𝜔2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 + 𝜔0𝑝

2)
= ෍

𝑝=𝐼

𝑛 Ԧ𝛽𝑝 Ԧ𝛽𝑝
𝑇

𝑚𝑝
0(−𝜔2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 + 𝜔0𝑝

2)
Ԧ𝐹(𝑗𝜔)

= 𝑌 𝑗𝜔 Ԧ𝐹(𝑗𝜔)



Fonction de transfert
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Admittance / Fonction de Réponse en Fréquence (FRF)  ou de transfert :

[𝑌](𝑗𝜔) =
𝑋(𝑗𝜔)

Ԧ𝐹(𝑗𝜔)
=෍

𝑝=𝐼

𝑛 Ԧ𝛽𝑝
𝑇 ⊗ Ԧ𝛽𝑝

𝑚𝑝
0(−𝜔2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 + 𝜔0𝑝

2)

𝑌𝑟𝑠(𝑗𝜔) =
𝑋𝑟(𝑗𝜔)

𝐹𝑠(𝑗𝜔)
=෍

𝑝=𝐼

𝑛
𝛽𝑟
𝑝
𝛽𝑠
𝑝

𝑚𝑝
0(−𝜔2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 + 𝜔0𝑝

2)

Au voisinage du mode 𝒑:

𝑌𝑟𝑠 = 𝑌𝑟𝑠
𝐼+. . +𝑌𝑟𝑠

𝑛 ≅ 𝑌𝑟𝑠
𝑝 =

𝛽𝑟
𝑝
𝛽𝑠
𝑝

𝑚𝑝
0(𝜔0𝑝

2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 − 𝜔2)

𝑌𝑟𝑠



Analyse Modale Expérimentale
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Analyse Modale Expérimentale
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Analyse Modale – Fréquences Propres
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Mesure des pulsations propres

Au voisinage du mode 𝑝:

𝑌𝑟𝑠 = 𝑌𝑟𝑠
𝐼+. . +𝑌𝑟𝑠

𝑛 ≅ 𝑌𝑟𝑠
𝑝 =

𝛽𝑟
𝑝
𝛽𝑠
𝑝

𝑚𝑝
0(𝜔0𝑝

2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 − 𝜔2)



Analyse Modale –Amortissements Modaux
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Au voisinage du mode 𝑝:

𝑌𝑟𝑠 = 𝑌𝑟𝑠
𝐼+. . +𝑌𝑟𝑠

𝑛 ≅ 𝑌𝑟𝑠
𝑝 =

𝛽𝑟
𝑝
𝛽𝑠
𝑝

𝑚𝑝
0(𝜔0𝑝

2 + 2𝑗𝜂𝑝𝜔0𝑝𝜔 − 𝜔2)

𝜂𝑝 =
𝜔𝑝
′′ − 𝜔𝑝

′

𝜔𝑝
′′ + 𝜔𝑝

′

𝜔𝑝

𝒀𝒓𝒔,𝒎𝒂𝒙

𝒀𝒓𝒔,𝒎𝒂𝒙

𝟐

𝝎𝒑
′ 𝝎𝒑

′′



Analyse Modale –Vecteurs Propres
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A la résonnance du mode 𝑝:

𝛽𝑠
𝑝
∝ 𝑌𝑟𝑠(𝜔𝑝)𝑌𝑟𝑠 𝜔𝑝 ≈ 𝑌𝑟𝑠

𝑝
𝜔𝑝 ≈

𝛽𝑟
𝑝𝛽𝑠

𝑝

2𝑗𝜂𝑝𝑚𝑝
0𝜔𝑝

2 𝛽𝑟
𝑝
∝ 𝑌𝑟𝑠(𝜔𝑝)


